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ON A METHOD OF MINIMIZING THE MAXIMAL ACCUMULATED ERROR

G. M. Rozenblat

1. Let us consider an automatic control system described /74*

by the differential equation

L[y(t)]=f(t), Ot <t <(T,

S(0) = y (0) ... = y(n-1) (0) = 0,

where

L.1y (t) = L, [y (t) + c (t) y (t),

d
n  

d
n - 1

L - +  an_, (t) "" . .+ ao (i).
dtn dt'-1

We shall assume that the function ak(t) at /E[O, T]I has 'k con-

tinuous derivatives (k=0, 1,..., n-1), and

maxIak(t) =a, Ot<T, 0<k n-l;

The quantity c(t) belongs to the class H of piecewise continuous

functions and Ic(t1).,co,j0,t< T . The function c(t) has the physi-

cal meaning of a variable amplification factor (Cor variable

rigidity in the case of mass oscillations on a spring). The

perturbation f(t) belongs to the class F of piecewise continuous

functions and If(t) lfo-, 0tIT . It is necessary to determine the

function co(t)eI) , for which the following is satisfied

A -L min maxy (T, (), c ()) j.
cEH fEI (2)

Here y[T, f(t),, c(t.)] is the solution of Cl) at the moment of

time T for the selected functions c(t) and f(t). This problem

*Numbers in the margin indicate pagination of foreign text.-
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was formulated in [1] and [2]. These studies give the algorithm

for the successive minimization of the maximum accumulated error.

The sufficient conditions are given, for which the algorithm

leads to a definition of A in (2). An estimate is made of the

number of conversions for the function co(t) and the number of

steps necessary to obtain A.

This article describes another simpler algorithm for

minimizing the maximum accumulated error. A detailed study is /75

made of the oscillatory system of the second order

(L- +k),

for which when T>n(k+co) 2 it is shown that A is reached for

the function co(t), which. differs from a constant (_for the

mechanical interpretation, this means that the spring must have

a rigidity which is variable in time). In one particular case,

it is shown that this algorithm leads to a definition of the

global minimum. An example is given of a system for which the

algorithm was realized on a computer.

2. Let us describe a method for the successive minimiza-

tion of the maximum accumulated error. Let us assume that the
th

function c.(t) is determined on the i-h step. The iteration
1

process consists of establishing ci+1(t) , according to-the value of 1

c.Ct) obtained, which gives the minimized maximum error. Let
i

us introduce the notation: G.(t) = G.(t, T) - the Cauchy
1 1

function of the equation Ll(y)+ci(t)y=O;fi(t)=fosgnGi(t); ii(t)=

-i Ic(t)-cosgn[G(t)yj(t)]; OIT) , where Yi(t) is the solution of

(1) when c(t)=ci(t), f(t)=fi(t) . We should note that writing the

solution of (1) when c(t)= (t)! in the form

T

y (T) G, (t) f (1) dt
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leads to the fact that .naxjy(T)jl is achieved for the function

,f(t)=fi(t), 0,tsT/ .) Let us assume that B is any upper boundary of

the function [Gi(T, t)fI when TE[O, t],j tS[0, T], ci(t)EH,jI for example

(see [3]):

B = exp [T V 1 + (a + co)"J,
r -

Di= S O,(t). IGi(t)y,(t) I dt/ ,' O (t)dt,
0 0

Let us determine the set n():]

min () = 1:tE [0, TI, IGi(t)j<B2X 6O (t)d, k> 0.

Let us introduce the number pi as follows; if O<Di 16B2To,

then pji is the root of the equation

mes [-mi (4)] = Di116B2fo; C 3 1

If Di>16B2Tfo) , then Bi is any positive number for which m'i(P;)=[0, T]J-.

It may be shown that when 0<DI16BT12T[fo, Equation C3) has a

unique non-zero solution, and I3.=0} only when "Di=0 . We should

note that if 4i is a discontinuity point of the function memsii;()]j

and mcs[mi(p~+)O)]>D/16B2 , but fnes[t7ii(Pi--O)]<D/!16l32jfo , we then

assume

tres [n, (P)]l Dil/16132'fo.

The equation ci+i,(t) gives the minimized maximum accumulated

error and is determined by the formula

1~ (1) = ci+, (1) - c, (t) = y,0, (1) sgn [G, (1) , (1)], 0 t . T, (14)

where y=min{in(a, .fj, Here the numbers ai\ and , are the same

as were determined above.
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3. In this section, we shall determine the minimization /76

of the maximum accumulated error, if ci+1 (t)l is determined by

Formula (4).

We shall first prove that when Oto-'T1 the following

inequality holds

T

|G (to)-Gi+ (to) l <8 - B lll (t) dt. 151
0

Actually, we shall set

h (t) = G; (to, t) - Gij+ (to, t), O < to <, < T.

It follows from the definition of the Cauchy function G.Ct)
1

and Gi+ 1(t) that hCt) satisfies the equation

L, [h (t) + c, (t) h (t) = [c+,, (t) - c, (t)J G,+ (to, t).

Ih addition, taking the fact into account that the initial

conditions for the function h(t) are zero, we obtain

h(T) f G,(t, T) 1i (t) G+j (to, t)dt.
to

Inequality (5) thus follows. We obtain the following from (51

and the definition of the set mi;y)

f, (t)- l+, (t) = O for t 10, TI\mi(y,). (C6 )

Let us write the solution Yi.Ct as follows

T T

y, (T) = yH+1 (T) + J , (t) Gi (t) yG () dt + jG,+1 (t). [f, (t) - f,+, (t)] dt +-
ST (U7 )

- j [G (t) - G1+1 (t) JI, (t) yj (t) dt.

Taking (4), (5), and (16) into account, we obtain
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T T

S, (t) G, (t) y, (t) dt = y, O (t). 1G, (t) y, (t) dlt,0 0

T

o tEG i(Vi)
G 21. )f(t) - t)i 2 j (] t< 2,G (t)|Itt <

T T

It follows from th 0 (ese determinations that /77 (1) - I G (t) () I t,

TT

Substituting th) - (t)]()ese rela (t)tionships in Iwe o(t) y(t)ain <
0 0

It follows from these determinations that /for the optiality

T T

'G+  (t) [f, (t)- f1+ (1 t i > - .0, (t) I, (t) y (t) it
0 0

T T

..[Gc+, (t) - Gi (t)]. 1i (t) -. (t) dt > - 1' 6, (t)- G , (t) y () tit
0 0

Substituting these relationships in of (., we obtain

T

y,+1 (T) < y, (T) - -! 0, (t)" G, (t) y (t) I tt.
0

It thus follows that a necessary condition for the optimality

of controlling ci(t) is the equation 0i(t)=0, 0<t<T , or

for almost all tE-[O, T]I-

For an unequivocal interpretation of (.8), it must be shown

that the set of zeros of the function Gi(t)yi(t) has the

dimension of zero.
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In the same way, this set is finite. Actually, for the

function Gi(t) this was proven according to a method proposed

in [4]. It may then be found in a similar manner that the set

of zeros of the function y.it) is finite.

4. Let us consider the problem for the operator.

L=--- +lk c(t) ,

where k=const, k-c >j . The following three cases are studied

here:

al T(kc)
0 <T<n(k+Co) - 2 .

I

b) n(k+co) 2 <7<o;"

c) n(k+ Co) 27T2n(k+c) 2 co<k(5/3)o.

Let us examine each case separately.

a) It follows from the Sturm.theorem regarding the

number of zeros of the solution for the equation LCy) = 0

(see [3]) that G0 (t) does not have zeros in the CO, T) interval

for any c(t)EH/ . Taking the fact into account that in this

case

*.((t = fo SG ((, t)dTi"0\

we find that y0 Ct) does not have zeros either in (O, T). Based

on (8), we conclude that the constant c0 is a single optimal

control in this case.
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b) In this case c(t)=a=const (0OtlT, -coa:co) is not

optimal for any a. Actually, we shall consider one iteration

of the algorithm in Section 2. For the first step, let us select

c(i)= a= const, O<t T;

Then,

G,(t) = G(t, T)=(k + a) 2 sn (k +a) 2 (T - ). (9

Let us assume t1 is the first positive zero of the function /78

;G,(t) . Then

,(t) = fo.(k -t- a).sgnG (t)J-[l - cos(t (k -- a) 2)], 0 t tt1).\ (.10)

We find from (9) that

t < a (k -a) -

and from (10), consequently,

YI(t) 0 for O t<t,.

Thus, there is a ,t,\ such that

y(t)-G, ()<0 for t< t<t,.

Thus, if 0Oa-co , we take -[i(t).#0) for (ti, 12) if Co:<a<0/

then l(t)=Ol for [0, tf . Then the new control c2()j will be

different from the constant a for (t, t2) , because for [0, t]i

the maximum accumulated error y2 (T)i is realized which is less

than l (T)

c) Let us assume G(t, T) is the Cauchy function for the

equation

y + [k + c(t)] y = 0. \ C11
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where p(t) is the solution of the equation (11) under the condi-

tions p(T) = 0, p(_T) = 1. It is known (see [3]) that G(t, T)=--p(t),

O <'t: . Then Condition (8) has the form

co(t)=-cosgn[p(t).y"(t), O<t <T. (12)

Since

T > n (k + c ) 2,

poC(t has at least one zero for CO, T1. It follows from

T < 2n(k+co)

and]the Shturm theorem that pO(Ct) has only one zero. Let us

assume po(a)=0) ; then

po(t) >0 for O<t<a; po(t)<0 for a t(T.

The maximizing perturbation is: ()</0 when O0t<c a

t°(t)> 01 for a<t<'f . Therefore, Yo(t)< 1 for 0O7<-

However,

y0 (T)= o Go(t, T) dt > 0.
0

Thus, yo(t) has at least one zero for (0, T>. Utilizing the

inequality

T < 2n (k + co) 2

we find that yoCt has only one zero. Let us set yO(P)=0.1

We thus find from (12) that the optimal control has the

form shown in the figure.

Let us now prove the

uniqueness of this control, i.e.,

- IY 13 the sufficiency of the equation

9P( (12). We shall assume the
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existence of the functions (/),i and c(tjl which satisfy

the condition (12) and differ from 'p~(i), o(/1) , and c'(t)I

Let us assume (PI)=-0, pi(u )=0) . Using the Shturm theorom, we

find either [ai, P] or cz, t3 . Let us assume that ai, 1P]c1a, P]j /79

Then

c,(t) c ( t ) , >,lC (t)0 (t), O t < T.

We have

Yi + (k + c, ()) = f,(t),

yo + (k + c° (t)) y = f (t).

Subtracting the first equation from the second, we obtain

d (yo - y ) + (k + co ()) (yo- y,) = (O (t)- f (t)) + (c, () - co (t)) y,..

Integrating the latter equation over the segment [01 ,

yo(t) - UY (t) = Go (r, t) .I(f (r) -- f (r)) + (c, (t) - c' (t)) y, (T)] d' =
0

= ' G  ( r, I) ° (f 0() - f, (r)) + (c, (t) - co (z)) y, (r)] dr.

When t=~B\ , we obtain

yo (0) - Y (3I) = P Go (r, 01,).(2fo + 2coy , (T)) dT, (13)_

since fo(T=i(T), co(r)= c(r); a, <<,.i

The function YU() when azi(-t<% has the form

y () = - (foi(k + Co)). [ - cos (r (k + co) 2)

Thus, since k>co\ , we obtain

Il ()l <2ifo/lk + co) < o/co.

9



Thus,

2f + 2coy,(t)>0\ for act<aO

Taking the fact into account that when k<(5/3)co/

T < 2n (k _ co) 2 < (k - co) 2

will hold, we obtain Go(t, pl)>O, a t a\. Consequently, the

integral in (_13) is positive; therefore, Y0(P)-(!P1)=
0 (Pl)>J

The latter inequality contradicts the assumption <ai<Pi< 3 .

The case €(<<'<ji,<l\may be examined in a similar manner. Thus,

we obtain the equation ~u=L, [ =ti\ In case c) Equation (8)

is necessary and sufficient for the optimality of the control

co(t) in the sense of the minimum of the maximum accumulated

error.

5. The numerical realization of the algorithm was performed

on a "Minsk-22" computer for a system of the second order like

(11) with the following values of the parameters T==3,14; k=3; co=1.

The results obtained are given below for the six iterations:

1) lj1 (T) = 1.0 (constant rigidity of the spring); 2)

7i(T) = 0.91 (variable rigidity); 3) y3(T) =0,908; 4) Y4 (T) =0,9069227; 5) ~U(7) =\

0,9037; 6) y6(T) =0,9019117\
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